3.4.28 \(\int \frac {\cos (c+d x) \cot (c+d x)}{a+b \sin (c+d x)} \, dx\) [328]

Optimal. Leaf size=75 \[ -\frac {x}{b}+\frac {2 \sqrt {a^2-b^2} \tan ^{-1}\left (\frac {b+a \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{a b d}-\frac {\tanh ^{-1}(\cos (c+d x))}{a d} \]

[Out]

-x/b-arctanh(cos(d*x+c))/a/d+2*arctan((b+a*tan(1/2*d*x+1/2*c))/(a^2-b^2)^(1/2))*(a^2-b^2)^(1/2)/a/b/d

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 75, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {2968, 3137, 2739, 632, 210, 3855} \begin {gather*} \frac {2 \sqrt {a^2-b^2} \text {ArcTan}\left (\frac {a \tan \left (\frac {1}{2} (c+d x)\right )+b}{\sqrt {a^2-b^2}}\right )}{a b d}-\frac {\tanh ^{-1}(\cos (c+d x))}{a d}-\frac {x}{b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]*Cot[c + d*x])/(a + b*Sin[c + d*x]),x]

[Out]

-(x/b) + (2*Sqrt[a^2 - b^2]*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(a*b*d) - ArcTanh[Cos[c + d*x]]/
(a*d)

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 2739

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[2*(e/d), Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 2968

Int[cos[(e_.) + (f_.)*(x_)]^2*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Int[(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x])^m*(1 - Sin[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f,
 m, n}, x] && NeQ[a^2 - b^2, 0] && (IGtQ[m, 0] || IntegersQ[2*m, 2*n])

Rule 3137

Int[((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)])), x_Symbol] :> Simp[C*(x/(b*d)), x] + (Dist[(A*b^2 + a^2*C)/(b*(b*c - a*d)), Int[1/(a + b*Sin[
e + f*x]), x], x] - Dist[(c^2*C + A*d^2)/(d*(b*c - a*d)), Int[1/(c + d*Sin[e + f*x]), x], x]) /; FreeQ[{a, b,
c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \frac {\cos (c+d x) \cot (c+d x)}{a+b \sin (c+d x)} \, dx &=\int \frac {\csc (c+d x) \left (1-\sin ^2(c+d x)\right )}{a+b \sin (c+d x)} \, dx\\ &=-\frac {x}{b}+\frac {\int \csc (c+d x) \, dx}{a}-\left (-\frac {a}{b}+\frac {b}{a}\right ) \int \frac {1}{a+b \sin (c+d x)} \, dx\\ &=-\frac {x}{b}-\frac {\tanh ^{-1}(\cos (c+d x))}{a d}+\frac {\left (2 \left (\frac {a}{b}-\frac {b}{a}\right )\right ) \text {Subst}\left (\int \frac {1}{a+2 b x+a x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{d}\\ &=-\frac {x}{b}-\frac {\tanh ^{-1}(\cos (c+d x))}{a d}-\frac {\left (4 \left (\frac {a}{b}-\frac {b}{a}\right )\right ) \text {Subst}\left (\int \frac {1}{-4 \left (a^2-b^2\right )-x^2} \, dx,x,2 b+2 a \tan \left (\frac {1}{2} (c+d x)\right )\right )}{d}\\ &=-\frac {x}{b}+\frac {2 \sqrt {a^2-b^2} \tan ^{-1}\left (\frac {b+a \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{a b d}-\frac {\tanh ^{-1}(\cos (c+d x))}{a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.09, size = 90, normalized size = 1.20 \begin {gather*} -\frac {a c+a d x-2 \sqrt {a^2-b^2} \tan ^{-1}\left (\frac {b+a \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )+b \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )-b \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )}{a b d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]*Cot[c + d*x])/(a + b*Sin[c + d*x]),x]

[Out]

-((a*c + a*d*x - 2*Sqrt[a^2 - b^2]*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]] + b*Log[Cos[(c + d*x)/2]]
- b*Log[Sin[(c + d*x)/2]])/(a*b*d))

________________________________________________________________________________________

Maple [A]
time = 0.16, size = 94, normalized size = 1.25

method result size
derivativedivides \(\frac {\frac {\left (2 a^{2}-2 b^{2}\right ) \arctan \left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{a b \sqrt {a^{2}-b^{2}}}+\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {2 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{b}}{d}\) \(94\)
default \(\frac {\frac {\left (2 a^{2}-2 b^{2}\right ) \arctan \left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{a b \sqrt {a^{2}-b^{2}}}+\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {2 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{b}}{d}\) \(94\)
risch \(-\frac {x}{b}+\frac {i \sqrt {a^{2}-b^{2}}\, \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \left (a +\sqrt {a^{2}-b^{2}}\right )}{b}\right )}{d b a}-\frac {i \sqrt {a^{2}-b^{2}}\, \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i \left (-a +\sqrt {a^{2}-b^{2}}\right )}{b}\right )}{d b a}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{d a}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{d a}\) \(155\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*cot(d*x+c)/(a+b*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d*((2*a^2-2*b^2)/a/b/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*d*x+1/2*c)+2*b)/(a^2-b^2)^(1/2))+1/a*ln(tan(1/2
*d*x+1/2*c))-2/b*arctan(tan(1/2*d*x+1/2*c)))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*cot(d*x+c)/(a+b*sin(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?`
 for more de

________________________________________________________________________________________

Fricas [A]
time = 0.40, size = 262, normalized size = 3.49 \begin {gather*} \left [-\frac {2 \, a d x + b \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - b \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - \sqrt {-a^{2} + b^{2}} \log \left (-\frac {{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2} - 2 \, {\left (a \cos \left (d x + c\right ) \sin \left (d x + c\right ) + b \cos \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}}}{b^{2} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2}}\right )}{2 \, a b d}, -\frac {2 \, a d x + b \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - b \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 2 \, \sqrt {a^{2} - b^{2}} \arctan \left (-\frac {a \sin \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \cos \left (d x + c\right )}\right )}{2 \, a b d}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*cot(d*x+c)/(a+b*sin(d*x+c)),x, algorithm="fricas")

[Out]

[-1/2*(2*a*d*x + b*log(1/2*cos(d*x + c) + 1/2) - b*log(-1/2*cos(d*x + c) + 1/2) - sqrt(-a^2 + b^2)*log(-((2*a^
2 - b^2)*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2 - 2*(a*cos(d*x + c)*sin(d*x + c) + b*cos(d*x + c))*sq
rt(-a^2 + b^2))/(b^2*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2)))/(a*b*d), -1/2*(2*a*d*x + b*log(1/2*cos
(d*x + c) + 1/2) - b*log(-1/2*cos(d*x + c) + 1/2) + 2*sqrt(a^2 - b^2)*arctan(-(a*sin(d*x + c) + b)/(sqrt(a^2 -
 b^2)*cos(d*x + c))))/(a*b*d)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\cos {\left (c + d x \right )} \cot {\left (c + d x \right )}}{a + b \sin {\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*cot(d*x+c)/(a+b*sin(d*x+c)),x)

[Out]

Integral(cos(c + d*x)*cot(c + d*x)/(a + b*sin(c + d*x)), x)

________________________________________________________________________________________

Giac [A]
time = 5.24, size = 94, normalized size = 1.25 \begin {gather*} -\frac {\frac {d x + c}{b} - \frac {\log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a} - \frac {2 \, {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (a\right ) + \arctan \left (\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + b}{\sqrt {a^{2} - b^{2}}}\right )\right )} \sqrt {a^{2} - b^{2}}}{a b}}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*cot(d*x+c)/(a+b*sin(d*x+c)),x, algorithm="giac")

[Out]

-((d*x + c)/b - log(abs(tan(1/2*d*x + 1/2*c)))/a - 2*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(a) + arctan((a*tan(
1/2*d*x + 1/2*c) + b)/sqrt(a^2 - b^2)))*sqrt(a^2 - b^2)/(a*b))/d

________________________________________________________________________________________

Mupad [B]
time = 5.39, size = 896, normalized size = 11.95 \begin {gather*} \frac {\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{a\,d}+\frac {2\,\mathrm {atan}\left (\frac {64\,a^3}{64\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a^3+64\,a^2\,b-64\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a\,b^2-64\,b^3}-\frac {64\,a\,b^2}{64\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a^3+64\,a^2\,b-64\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a\,b^2-64\,b^3}+\frac {64\,b^3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{64\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a^3+64\,a^2\,b-64\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a\,b^2-64\,b^3}-\frac {64\,a^2\,b\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{64\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a^3+64\,a^2\,b-64\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a\,b^2-64\,b^3}\right )}{b\,d}-\frac {2\,\mathrm {atanh}\left (\frac {64\,a^2\,\sqrt {b^2-a^2}}{256\,a^2\,b-768\,b^3+\frac {512\,b^5}{a^2}-64\,a^3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+832\,a\,b^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-\frac {1792\,b^4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{a}+\frac {1024\,b^6\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{a^3}}-\frac {512\,b^2\,\sqrt {b^2-a^2}}{256\,a^2\,b-768\,b^3+\frac {512\,b^5}{a^2}-64\,a^3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+832\,a\,b^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-\frac {1792\,b^4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{a}+\frac {1024\,b^6\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{a^3}}+\frac {512\,b^4\,\sqrt {b^2-a^2}}{256\,a^4\,b+512\,b^5-768\,a^2\,b^3-64\,a^5\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1792\,a\,b^4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+832\,a^3\,b^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+\frac {1024\,b^6\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{a}}-\frac {1280\,b^3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}}{256\,a^3\,b-768\,a\,b^3+\frac {512\,b^5}{a}-64\,a^4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1792\,b^4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+832\,a^2\,b^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+\frac {1024\,b^6\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{a^2}}+\frac {1024\,b^5\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}}{-64\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a^6+256\,a^5\,b+832\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a^4\,b^2-768\,a^3\,b^3-1792\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a^2\,b^4+512\,a\,b^5+1024\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,b^6}+\frac {320\,a\,b\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}}{256\,a^2\,b-768\,b^3+\frac {512\,b^5}{a^2}-64\,a^3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+832\,a\,b^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-\frac {1792\,b^4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{a}+\frac {1024\,b^6\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{a^3}}\right )\,\sqrt {b^2-a^2}}{a\,b\,d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)*cot(c + d*x))/(a + b*sin(c + d*x)),x)

[Out]

log(tan(c/2 + (d*x)/2))/(a*d) + (2*atan((64*a^3)/(64*a^2*b - 64*b^3 + 64*a^3*tan(c/2 + (d*x)/2) - 64*a*b^2*tan
(c/2 + (d*x)/2)) - (64*a*b^2)/(64*a^2*b - 64*b^3 + 64*a^3*tan(c/2 + (d*x)/2) - 64*a*b^2*tan(c/2 + (d*x)/2)) +
(64*b^3*tan(c/2 + (d*x)/2))/(64*a^2*b - 64*b^3 + 64*a^3*tan(c/2 + (d*x)/2) - 64*a*b^2*tan(c/2 + (d*x)/2)) - (6
4*a^2*b*tan(c/2 + (d*x)/2))/(64*a^2*b - 64*b^3 + 64*a^3*tan(c/2 + (d*x)/2) - 64*a*b^2*tan(c/2 + (d*x)/2))))/(b
*d) - (2*atanh((64*a^2*(b^2 - a^2)^(1/2))/(256*a^2*b - 768*b^3 + (512*b^5)/a^2 - 64*a^3*tan(c/2 + (d*x)/2) + 8
32*a*b^2*tan(c/2 + (d*x)/2) - (1792*b^4*tan(c/2 + (d*x)/2))/a + (1024*b^6*tan(c/2 + (d*x)/2))/a^3) - (512*b^2*
(b^2 - a^2)^(1/2))/(256*a^2*b - 768*b^3 + (512*b^5)/a^2 - 64*a^3*tan(c/2 + (d*x)/2) + 832*a*b^2*tan(c/2 + (d*x
)/2) - (1792*b^4*tan(c/2 + (d*x)/2))/a + (1024*b^6*tan(c/2 + (d*x)/2))/a^3) + (512*b^4*(b^2 - a^2)^(1/2))/(256
*a^4*b + 512*b^5 - 768*a^2*b^3 - 64*a^5*tan(c/2 + (d*x)/2) - 1792*a*b^4*tan(c/2 + (d*x)/2) + 832*a^3*b^2*tan(c
/2 + (d*x)/2) + (1024*b^6*tan(c/2 + (d*x)/2))/a) - (1280*b^3*tan(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2))/(256*a^3*b
- 768*a*b^3 + (512*b^5)/a - 64*a^4*tan(c/2 + (d*x)/2) - 1792*b^4*tan(c/2 + (d*x)/2) + 832*a^2*b^2*tan(c/2 + (d
*x)/2) + (1024*b^6*tan(c/2 + (d*x)/2))/a^2) + (1024*b^5*tan(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2))/(512*a*b^5 + 256
*a^5*b - 768*a^3*b^3 - 64*a^6*tan(c/2 + (d*x)/2) + 1024*b^6*tan(c/2 + (d*x)/2) - 1792*a^2*b^4*tan(c/2 + (d*x)/
2) + 832*a^4*b^2*tan(c/2 + (d*x)/2)) + (320*a*b*tan(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2))/(256*a^2*b - 768*b^3 + (
512*b^5)/a^2 - 64*a^3*tan(c/2 + (d*x)/2) + 832*a*b^2*tan(c/2 + (d*x)/2) - (1792*b^4*tan(c/2 + (d*x)/2))/a + (1
024*b^6*tan(c/2 + (d*x)/2))/a^3))*(b^2 - a^2)^(1/2))/(a*b*d)

________________________________________________________________________________________